
Object Detection Using a Deformable Parts Model

Evan Rosen and Nikil Viswanathan
Computer Science Department

Stanford University
{emrosen,nikil}@stanford.edu

1. Introduction
We implemented the deformable parts model described

in [3]. We first give a brief high-level description of the
deformable in part model and the histogram of gradients
(HoG) features including some of the key insights upon
which they rely. In Section 3.1 we give a detailed descrip-
tion of the model in [3]. In Section 3.2 we note some of the
ways in which our model differs from that presented in the
original paper. Next, we give a detailed description of our
code in Section 4. We then present our results and evalu-
ate the trade-offs of various design decisions in Section 5.
Finally, we discuss some of the implementation constraints
we encountered during for this project and give suggestions
for improvement in Section 6.

2. Person Detection
The problem of object detection requires finding rep-

resentations for objects which will remain invariant under
intra-class variation. For many objects, uniformities with
respect to shape texture and color can yield robust detec-
tion algorithms. Unfortunately in people these features are
rarely invariant across instances due to changes in cloth-
ing, scene context and articulation. This rules out some of
the more efficient object detection techniques which can ef-
ficiently compute filter cross-correlations using optimiza-
tions like the integral image representation of Viola and
Jones [6]. Despite the challenges posed by articulation,
shape remains one of the more important visual features
for person detection. It is not the blue of a sweater that
reliably identifies a person, but the shape of a head or the
thickness of an arm. Moreover, modeling the space of pos-
sible articulations is an especially difficult problem in part
due to the curse of dimensionality. The relative indepen-
dence of human points of articulation means that people
can take on a combinatorially large set of configurations.
Learning these configurations directly would then require
an enormous amount of training data.

A recent approach to dealing with the high-
dimensionality of people configurations has been to

decompose people (and objects in general) into a set of
independent parts. For example, though articulation of
the neck allows the shape of the torso and head combined
to change, it leaves the shape of each part relatively
unchanged. The Implicit Shape Model [4], the deformable
parts model [3] and even visual words models such as [2],
all take advantage of the independencies in the data by
learning part-level models which remain relatively invariant
across instances.

While decomposing shape alone has proven useful, the
assumption of complete independence between parts is
clearly too strong. Ideally we would have a set of models for
different features of an object such that each models com-
plexity would be proportional to the invariance of that fea-
ture. This way, given a fixed training size, those models for
highly variable features would not overfit, but those models
for more invariant features would take full advantage of the
signal. The systems of [4] and [3] take an approach sim-
ilar to this by modeling invariant patches or keypoints in
relatively great detail, while modeling the configuration of
those keypoints more coarsely.

3. Algorithm
3.1. Deformable Parts Model

The deformable part model in [3] implements the intu-
itions discussed above by representing a person as a set of
part appearance models whose locations are modeled by
a star-shaped configuration model. In addition to the part
models, a single root root is used to represent the appear-
ance of the entire person, despite the changes in configu-
ration between instances. Each of these appearance models
uses the Histogram of Gradients (HoG) features to represent
the corresponding patch in the image. The entire model is
then formulated as a binary classification problem in which
we wish to learn the characteristics of the root and part fea-
ture patches as well as their spatial configuration. Specif-
ically, the model consists of a set of SVM weights which
correspond to the HoG feature weights for the root and part
filters plus a set of linear and quadratic deformation penal-

1



ties by which encode the spatial configuration of the parts
with respect to the root filter.

A key part of their approach involves the ability to si-
multaneously learn the appearance and configuration mod-
els while also estimating the location of each part for each
instance. Without this additional step, it is not possible to
use the notion of independence, discussed above to over-
come the articulation problem. [3] use an algorithm in the
style of EM to iteratively learn the optimal appearance and
configuration models for some placement of parts in each
image and then find the optimal part placements given the
updated appearance and configuration models. Lastly, they
employ a principled technique for finding hard negatives,
by updating their negative training examples after each iter-
ation with the labelled negative examples that are the most
misclassified.

3.2. Our Model
Our model differs from [3] primarily in the way we

do non-maximum suppression in addition to several other
small aspects. For non-maximum suppression, we take a
set of detections and order by confidence. Proceeding down
this list in decreasing confidence, we select the current de-
tection and then remove any other bounding boxes which
overlap with the current bounding box by more than 25

We also experimented with automatic root filter size se-
lection, though we eventually converged onto the same pa-
rameters used in [3]. We first plotted the x and y dimensions
to see the distributions of scales in Figure 1(b). This skewed
nature of this distribution suggested that an arithmetic mean
would be biased by the the larger outliers and be a poor fit
for most bounding boxes. We realized however, that the
scale was only on part of the root filter dimensions. Due to
the anisotropic scaling preformed as a pre-processing step,
it is also important to choose an aspect ratio which does
not require too much distortion of the original bounding
box. The distribution of aspect ratios (y/x) is plotted in Fig-
ure 1(a) which suggests that a value between one and two
would be optimal. Using the median value for each dimen-
sion yielded a root filter dimension of 229× 125 which has
an aspect ratio of 1.8 and falls in a densely populated part of
the scatter plot. Despite our principled approach, we found
that setting the dimensions to 128× 64, the size used in the
paper, actually improved our results significantly. While we
cannot be sure how much of this has to do with overfitting,
the remainder of results reported will assume the 124 × 64
root filter dimensions.

4. Code
The main file of our code is run tests.m. run tests has the

parameters and test framework. To run the entire program,
call run tests.

Key Files:

• run tests.m:
Run this to start the entire pipeline.

• train detector.m:
The pipeline for training the detector including the la-
tent SVM loops and the hard negative mining loops.

• get pos.m:
Extracts bounding box statistics, rescales positive
training examples and computes HoG features.

• get neg rand.m:
Extracts random negative training examples such that
they do not overlap with positive examples and com-
putes HoG features.

• train detector.m:
The pipeline for training the detector including the la-
tent SVM loops and the hard negative mining loops.

• test.m:
The framework for evaluating the detector.

• detect.m:
The actual detection sliding window code for a given
image.

Several files have a debug parameter at the top; setting
this parameter to true prints debug statements and displays
visualizations. We wrote all of our code in our system
with the exception of the HoG feature generation, the SVM
solver, and part of the root filter visualization. Due to com-
putational constraints we chose to use the optimized C++
HoG feature implementation from [3]. While implement-
ing this ourselves would have been an informative process,
having recently implement SIFT for 223B, we felt comfort-
able using the code without actually writing it ourselves.
Computational efficiency and an interest in the vision com-
ponents of the algorithm also led us to use the liblinear SVM
solver [1] as a component of our latent SVM implementa-
tion.

5. Results
The best results we achieved were on a run which used

the entire training data set (2358 positive, 2498 negative)
testing on 100 examples. The precision and recall curve
for this run is shown in Figure 2. Despite the fact that our
system never reached competitive levels of performance, we
were able to evaluate a variety of design decisions through
their relative impact on the performance of the model.

5.1. Upsampling vs Downsampling
Given the constraint that the parts filters be computed at

twice the resolution of the root filter, we either needed to
use a downsampled version of the original bounding box
for the root filter HoG features or an upsampled version for
parts filters. While this decision has no effect on the testing
method, it does bear upon the resolution of the part filters
and the general complexity of the model. We reasoned that
if we downsampled the original image to get the root filter



0 1 2 3 4 5 6 7 8
0

100

200

300

400

500

600

700

800

900

1000

Aspect Ratio (y/x)

C
ou

nt
Positive Example Bounding Box Aspect Ratio Histogram

(a) this is a test caption

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

300

350

400

450

500

X Dimension (Pixels)

Y 
D

im
en

si
on

 (P
ix

el
s)

Bounding Box Dimensions

(b) scatter plot of positive bounding box dimensions

resolution we would be throwing away valuable information
for training the root filter. On the other hand, upsampling
the images for parts filters cannot create new information
with which to train the part filters, but merely trains a more
complex model on the same data.

We initially downsampled our root filters on the thinking
that they need only pick out coarse patterns of person like
shapes. However, when training our initial root filters on the
MIT pedestrian data set [5], we noticed that the root filter
did not look at all like a person and the parts did not have
any correspondence to human body parts as shown in Fig-
ures 1(c) and 1(e) in comparison to upsampling as shown in
Figures 1(d) 1(f). We werent sure to what degree this was
just a result of the resolution at which we can pick out hu-
man shapes in HoG feature visualizations or whether it re-
ally indicates that our model suffered from using too course
of HoG cells, which lost valuable spatial information. How-
ever, looking at the parts initialization, we noticed that the
parts in the upsampled image corresponded with the physi-
cal model of individual parts in a human whereas the down-
sampled image seemed to have non-corresponding parts ini-
tialization.

(c) Downscaled (d) Upscaled

(e) Downscaled (f) Upscaled

Figure 1. Subfigures (d) and (c) show the positive weight HOG
feature visualization for the initial root filters. Subfigures (f) and
(e) show a heat map of the initial root filters with the initial part
locations drawn on MIT Data Set

5.2. Number of Parts
Given that our the parts models do exhibit an especially

intuitive configuration, we thought it might be useful to try
varying the number of parts in the model . Keeping the total
proportion of the root filter covered by the parts fixed at 0.8,
we experimented with 2,4,6, and 8 parts. The results are
shown in Figure 3. Unfortunately this presented no clear
winner, potentially due to the small train (200 positive and
500 negative) and test (200) data sets.

5.3. Root Filter Evolution in Latent SVM
Our main goal of using the MIT pedestrian data set was

to provide a sanity check that we were correctly creating the
feature matrix correctly and implementing the latent SVM
training. The HoG visualizations of our root filter weights



0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

recall

pr
ec

is
io

n

General Model (AP=8.378718e 04)

Figure 2. Precision recall curve for model trained on entire data set

Figure 3. Precision Recall curves for varying number of parts mod-
els while keeping the proportion of the root filter covered by parts
model fixed at 0.8

in the first row of Figure 4 show the initial values produced
by training without the parts models, and the incremental
results from the first two epochs of latent SVM for the MIT
data set. These show a clearly pattern of a human form and
convinced us that we were on the right path at least. The
changes between iterations are both interesting and hard to
interpret due to intensity normalization between each filter
visualization (the intensities in each filter are normalized
by the maximum absolute feature value). Setting aside the
intensity, we can at least see that the shape of the human is
becoming clearer as the parts model locations begin settle
and become more discriminative, letting the root filter focus
more on invariant body shape features.

On the other hand, our results on the PASCAL VOC data

Figure 4. Root filter evolution on MIT and PASCAL VOC 2007

display no clear human like form. Looking at the actual
images this understandable because many of the variety of
poses is great and our training set size is quite small (100
positive). Though the progression of the root filter on the
PASCAL data set is less human like, the same effect of in-
creasing feature sparsity can be observed.

5.4. Mining Hard Negatives
Unfortunately we were not able to generate large scale

results to test the efficacy of this component. However, it is
worth noting that when searching for new hard negatives on
the first iteration, almost every sampled image patch turned
out to be a hard negative. This points to severe overfitting
which we expect the hard negatives to help combat.

5.5. Detection Window Size Bias
One interesting pathology of our model is the tendency

to make the most confident guess at the largest level of the
spatial pyramid (meaning the smallest detection windows).
However, if we restrict the levels of the spatial pyramid
searched at test time, we see that the system is still pre-
dicting larger bounding boxes, but they simply do not mak-
ing it through non-maximum suppression in the presence
of smaller detection. We should expect to see at least a
few larger windows which correspond to the most confident
guesses. Recall, that our greedy non-maximum suppression



7.437175e−02

2.904875e−02

2.849572e−02
2.259393e−02

−6.974660e−05

−7.678380e−02

−1.136165e−01

−3.302518e−01

−3.572168e−01

−4.581951e−01

−4.711543e−01

−5.666844e−01

−6.407315e−01

−6.421306e−01

−7.463761e−01

−7.682146e−01

−8.564051e−01
−8.614714e−01

−9.751908e−01−9.771850e−01

−1.033435e+00

−1.279704e+00
−1.359046e+00

−1.412343e+00
−1.619084e+00

−1.761654e−01

−5.689843e−01

−5.894306e−01

−7.736088e−01

−9.008665e−01

−1.019900e+00

−1.347663e+00

−1.425192e+00

−1.487513e+00

−1.519681e+00

5.268438e−01

Figure 5. Examples of size bias in detection windows where detec-
tion windows are limited to the highest 10, 5, and 3 levels of the
pyramid

algorithm never removes an overlapping detection window
if it is the more confident of the two windows. Another
possibility is that the sheer number of candidate detection
windows is much greater at the lower levels of the spatial
pyramid (larger images). Because we use a sliding window
with a fixed step size in cell space, we wind up covering the
entire image in only two or three steps at the higher levels
of the spatial pyramid (smaller images) and generated pro-
portionately fewer guesses. Two examples of this behavior
are shown in Figure 5 which consider the top 10, 5 and 3
levels of the spatial pyramid.

5.6. Effect of Training Set Size on Root Filter
As we were not able to access machines to run the entire

training set we attempted to at least measure the effect of
training set size on the meager data which we could man-
age, the hopes that we might extrapolate on our models per-
formance were we to use the entire data set. Figure 6 shows
the root filters trained on data sets of size 100 200 and 300.
We can see that there is quite a bit of improvement in terms
of sparsity as the number of examples grows.

5.7. Effect of Training Set Size on Precision and
Recall

Increasing the training set size from 50 to 100 to 200 had
a drastic improvement in terms of the precision and recall
for our model. The precision of the 200 example trained
classifier was better over the entire recall curve than any
point on the 100 example trained curve. We believe that
this indicates our model and algorithms are at least some-
what correct and that if we were able to run the it on the
full data set we would see even more drastic performance
improvements all around.

6. Implementation Constraints
We ran into several computational issues while testing

and running our code. First of all, our AFS drives did not
have enough space to store all of the image files from the

Figure 6. Effect of training set size on root filter

PASCAL VOC data set and we struggled with various is-
sues relating to this for over a week. We then ran the code
on our personal machines which were laptops with 2GB of
RAM however as we tried to train on a data set of over 400
positive and 400 negative images we found our machines
crashing on the SVM training method. When running our
classifier on test data, each image took many seconds to
classify so when we were trying to rapidly run tests for tun-
ing parameters we would cut down the test set to around
200 examples, or slightly more if we wanted good graphs
and visualizations.

References
[1] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-

J. Lin. LIBLINEAR: A library for large linear classification.
Journal of Machine Learning Research, 9:1871–1874, 2008.

[2] L. Fei-Fei, R. Fergus, and P. Perona. Learning generative
visual models from few training examples: an incremental
Bayesian approach tested on 101 object categories. In Work-
shop on Generative-Model Based Vision, 2004.

[3] P. Felzenszwalb, D. McAllester, and D. Ramanan. A discrim-
inatively trained, multiscale, deformable part model. Citeseer,
2008.

[4] B. Leibe, A. Leonardis, and B. Schiele. Combined object cat-
egorization and segmentation with an implicit shape model. In
Workshop on Statistical Learning in Computer Vision, ECCV,
pages 17–32. Citeseer, 2004.

[5] M. Oren, C. Papageorgiou, P. Sinha, E. Osuna, and T. Poggio.
Pedestrian detection using wavelet templates. pages 193–99,
1997.

[6] P. Viola and M. Jones. Rapid object detection using a boosted
cascade of simple features. 2001.


